TSV: Current Product Reliability – ‘What’s Missing?’

R. Huemoeller
Sr. VP, Adv 3D Products
July 14, 2011
Package Assembly – Interfaces Well Known

- **Stacked CSP**
- **FlipStack® CSP**
- **F2F FlipStack®**
- **Logic with Embedded Memory**
- **Logic and Memory in Same Module**
- **Logic and Memory in Separate Packages**
Typical Qualification Envelope – Example

<table>
<thead>
<tr>
<th>Quality</th>
<th>Moisture Sensitivity</th>
<th>JEDEC L2 / 260°C Reflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Package Reliability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temp Cycle B</td>
<td>-55°C ↔ 125°C, 1000 cycles</td>
</tr>
<tr>
<td></td>
<td>High Temp Storage</td>
<td>150°C / 1000 hrs</td>
</tr>
<tr>
<td></td>
<td>Temp + Humidity</td>
<td>85°C + 85RH / 1000 hrs</td>
</tr>
<tr>
<td></td>
<td>Board Level Temp Cycle</td>
<td>-40°C ↔ 125°C, 1000 cycles Failure Free</td>
</tr>
<tr>
<td></td>
<td>Level 2 168 hours of 85°C / 60% RH</td>
<td></td>
</tr>
</tbody>
</table>

Product Verification
- 1 Lot / 22 - 77 units
 - Engineering Level

Product Qualification
- 3 Lots / 77 units
 - Product Level

Non Consecutive Lots – must be from different build cycles
Stacked CSP (SCSP) – Migration to TSV

Stacked CSP

FlipStack® CSP

F2F FlipStack®

TSV Stacked CSP
FCBGA – Migration to TSV

Logic with Embedded Memory

Logic and Memory in Same Module

Logic and Memory in Separate Packages

TSV Stacked BGA
Qualification Envelope – 3D CSP

<table>
<thead>
<tr>
<th>Product Verification</th>
<th>1 Lot / 45 units</th>
<th>Engineering Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Resistance</td>
<td>JEDEC L2 / 260C 3x Reflow</td>
<td>Pass</td>
</tr>
<tr>
<td>Package Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp Cycle</td>
<td>-55°C ↔ 125°C, 1000 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>High Temp Storage</td>
<td>150°C / 1000 hrs</td>
<td>Pass</td>
</tr>
<tr>
<td>Temp + Humidity</td>
<td>85°C + 85RH / 1000 hrs</td>
<td>Pass</td>
</tr>
<tr>
<td>Bd Level Temp Cycle</td>
<td>-40°C ↔ 125°C, 1000 cycles</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

- **45nm Node**
 - Memory ~ 100µm thick
 - Logic ~ 50µm thick with 10µm TSV at 40um pitch
 - 14x14mm Body area array bump pitch to substrate
Qualification Envelope – 2.5D BGA

<table>
<thead>
<tr>
<th>Product Verification</th>
<th>1 Lot / 45 units</th>
<th>Engineering Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>Moisture Resistance</td>
<td>JEDEC L4 / 240C 3x Reflow</td>
</tr>
<tr>
<td>Temp Cycle</td>
<td>-55°C ⇔ 125°C, 1000 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>High Temp Storage</td>
<td>150°C / 1000 hrs</td>
<td>Pass</td>
</tr>
<tr>
<td>Temp + Humidity</td>
<td>85°C + 85RH / 1000 hrs</td>
<td>Not tested</td>
</tr>
<tr>
<td>Bd Level Temp Cycle</td>
<td>-40°C ⇔ 125°C, 1000 cycles</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

- **28nm Node**
 - Multiple Die on Interposer ; 300µm thick, 40µm µBump pitch
 - Interposer ~ 100µm thick with 10µm TSV at 210um pitch
 - 42.5x42.5mm Body with heat sink
What’s Missing?

- Reliability Testing = Good Indicator of Future Performance?
 - Many new processes and equipment = many new failure modes
 - Interaction of vertical through vias (TSV’s) with metal layers above and below the vias
 - Do we know enough about all of the new processes to know standard reliability will be a good indicator of future performance
Uncertainty at Wafer Level

• Leads to Increase in Gates & Cost
 – Added measures to protect against the unknown
 ✓ Copper Residue
 ✓ TSV Damage (liner)
 ✓ Copper Migration
 ✓ Electromigration
Wafer Finishing of TSV Devices

- Passivation and TSV Isolation
 - No Copper residue post WBG can be tolerated
 - No Damage to silicon, liner or tip can be tolerated

Silicon Etch Recess

Organic Passivation + UBM

Ni–Au on Copper Via
Liner Integrity & Cu Migration

- TSV
- Back Side Pad Metal
- Liner Intact / Un-damaged
- Damaged
Wafer Finishing of TSV Devices, cont.

• How to Verify / How Often:
 – Cu limit on Si = 2×10^{15} atoms/cm3 (Min. 20 ppb~)
 – Dynamic SIMs?
 – TOF SIMs?
 – TXRF?
Uncertainty at Assembly Level

- Again… Leads to Increase in Gates & Cost
 - Added measures to protect against the unknown

✓ Die Stacking Reliability
 - Underfill technology (voids, incomplete fill, excess fill, etc)
 - Die connectivity

 - Damage to underlying metal
Uncertainty at Assembly Level, cont.

• How to Verify / How Often:
 – Scanning acoustic microscopy (C-SAM)
 – Non-destructive technique that can be used to image the internal features of a specimen: highly sensitive to the presence of delamination sub-micron thickness (difficult to detect using X-ray radiography)
Uncertainty at Assembly Level, cont.

Known:
- Thin die warpage can cause non contact / high resistance

Unknown:
- Stress on via : liner damage
Uncertainty at Assembly Level, cont.
Uncertainty at Assembly Level, cont.
Paradigm Shift in Engineering for Reliability

- **Introduction of Loop Tracker**
 - Fab level mentality to engineering
 - Track all data and analyze for shifts
 - More cycles of learning
 - Cpk assessment earlier in development …. vs prior to production ramp
 - Much more detailed FMEA
Down Stream Risk Mitigation

- Potential Test Insertion Points
 - Vertical and Side-Side Die Stacks
Test Insertion Points

- CSP TSV Potential Test Insertion Points

F.S. Bump → B.S. Finish → Assembly Logic to Subst → Assembly Memory (Cube) to Logic → Final Test

Insert Test: Strip level O/S
Test Insertion Points, cont.

- CSP TSV Potential Test Insertion (Vertical Die Stacks)
 - Cumulative cost probably determines best test insertion point
Test Insertion Points, cont.

- Interposer TSV Potential Test Insertion Points
Test Insertion Points, cont.

- Interposer TSV Potential Test Insertion (Side-Side Die Stacks)
 - Cumulative cost probably determines best test insertion point
Summary: TSV Product Reliability

- Industry has established standards for qualification
- New processes and materials = New failure modes
- Requires extensive engineering to manage the chip package interactions
- Increased quality gates to mitigate against failure
- Cost of Quality
Thank You!