Recent Advancements in Spin-Torque Switching for High-Density MRAM

Jon Slaughter
Everspin Technologies
7th International Symposium on Advanced Gate Stack Technology, September 30, 2010
Outline

• Current status of MRAM products
• Toggle MRAM and Spin-Torque MRAM in the memory landscape
• Recent advancements in Spin-Torque MRAM technology
• Summary and Future Prospects for MRAM
Everspin Introduction

- Formed as Everspin in June 2008 – Previously part of Freescale Semiconductor
- The leading developer and manufacturer of integrated magnetic products
 - Industry-first MRAM supplier since June 2006
 - Embedded MRAM systems
 - Integrated magnetic sensors
- Current MRAM products
 - Parallel interface products ranging from 256k-16Mb
 - Infinite endurance, >20 year data retention, 35 ns read & write speed
 - Serial interface products ranging from 256kb-1Mb
 - 40 MHz SPI interface, No write delay, infinite endurance
Everspin MRAM Advantages

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-volatile capability</td>
<td>• Data retention >20 years</td>
</tr>
<tr>
<td>Performance</td>
<td>• Symmetric read/write – 35ns</td>
</tr>
<tr>
<td>Endurance</td>
<td>• Unlimited cycling endurance</td>
</tr>
<tr>
<td>CMOS integration</td>
<td>• Easily integrates in manufacturing back-end</td>
</tr>
<tr>
<td></td>
<td>• Compatible with embedded designs</td>
</tr>
<tr>
<td></td>
<td>• No impact on CMOS device performance</td>
</tr>
<tr>
<td>Temperature range, reliability</td>
<td>• -40°C < T < 150°C operation demonstrated</td>
</tr>
<tr>
<td></td>
<td>• Intrinsic reliability > 20 years lifetime at 125°C</td>
</tr>
<tr>
<td>Soft error immunity</td>
<td>• MRAM cell radiation tolerant</td>
</tr>
<tr>
<td></td>
<td>• Soft error rate from alpha radiation too low to measure (<0.1 FIT/Mb)</td>
</tr>
<tr>
<td>Environmentally friendly</td>
<td>• No battery, RoHS compliant, low power</td>
</tr>
</tbody>
</table>

© 2010 September 2010

Everspin Technologies, Inc.
Everspin MRAM Technology

- Simple 1-transistor + 1-MTJ memory cell
- MTJ inserted between metal layers
- State of bit detected as change in resistance
- Unlimited endurance
- Leverage CMOS semiconductor ecosystem
MRAM Storage Concept

Free Layer
Tunnel Barrier
Fixed Layer

Parallel = Low Resistance
Anti-Parallel = High Resistance

4Mb Measured Resistance Distribution

σ ~ 0.8%
MR ~ 28% @ 300mV w/ xstr

NiFe/AlOx/NiFe
Outline

- Current status of MRAM products
- **Toggle MRAM and Spin-Torque MRAM in the memory landscape**
- Recent advancements in Spin-Torque MRAM technology
- Summary and Future Prospects for MRAM
Memory Endurance Comparison

Everspin MRAM is the only Working Memory in the market that is Nonvolatile.
Memory Capacity Comparison

Current Everspin MRAM products are utilized as a Nonvolatile Working Memory in the market with performance/density similar to volatile SRAM.
Current Everspin MRAM products are utilized as a Nonvolatile Working Memory in the market with performance/density similar to volatile SRAM.
MRAM bit switching

Toggle-MRAM in production

- **Write architecture:** cross-point
 - Magnetic field pulses switch free layer
- **Read architecture:** 1T-1MTJ

ST-MRAM in development

- **1T-1MTJ architecture**
 - read and write
- **Spin torque from polarized tunneling current switches free layer**

- **Digit line write current**
- **H-field**
- **Isolation transistor**

- **Free layer**
- **Fixed layer**
- **Tunnel barrier**

- **Bit line write current**
Toggle Write Operation

Advantages: Eliminates disturb - Large operating window
Toggle-Bit Selection

- No \(\frac{1}{2} \)-select bit disturb
- All bits along \(\frac{1}{2} \)-selected current lines have increased energy barrier during programming
- Single write line can not switch bits
Spin Torque MRAM

Use spin momentum from current to change direction of S, m.

$$\Delta S = Torque$$

$\frac{\Delta S}{\Delta t}$

Free layer

Tunnel Barrier

Fixed Layer

Resistance (Ω)

Current (mA)

Rmax

MR

Rmin

20 nm
Outline

• Current status of MRAM products
• Toggle MRAM and Spin-Torque MRAM in the memory landscape
• Recent advancements in Spin-Torque MRAM technology
• Summary and Future Prospects for MRAM
Distribution Considerations

- Separation of V_{switch} and $V_{\text{breakdown}}$
 - *Tunnel barrier reliability*

- Separation of V_{read} and V_{switch}
 - *Avoid read-disturb errors*

- Separation of distributions important for working memory
 - MB memory \Rightarrow 12σ separation

\[
\text{Separation} = \frac{V_{\text{bd}} - V_{\text{sw}}}{\sigma_{\text{avg}}}
\]
Separation of switching and breakdown

- Large separation provides operating window
- From 16 kb arrays integrated with CMOS
 - Distributions: $\sigma \approx 4\%$
- Nonvolatile: $E_b/k_B T \approx 60$
- Continue increasing separation for reliability and manufacturing margin
 - Goal is unlimited endurance
Scaling ST-MRAM

• Today: Reduce J_c for reliability and smaller transistors
• Continued scaling: maintain energy barrier and manage distributions

• ST-MRAM bits scale favorably to available current from transistor
• Scaling requires continued improvement in magnetic devices and materials

I_c calculated for $J_c=2\text{MA/cm}^2$
Summary

• **MRAM is a highly reliable, high-performance, nonvolatile memory ICs, with unlimited endurance**
 – Has the unique characteristics of a working memory while providing non-volatility

• **Current MRAM product densities ranges from 256kb-16Mb**

• **Spin-Torque MRAM technology is advancing rapidly toward manufacturability**
 – Enables higher densities and lower power
 – Goal is to gain advantages of spin-torque writing while maintaining MRAM’s unique characteristics of nonvolatility and unlimited endurance