Interface engineering of Mo/Si multilayers for enhanced reflectance in EUVL applications

FOM Rijnhuizen, Nieuwegein, The Netherlands
H. Enkisch, S. Müllender, Carl Zeiss, Germany

Coating facilities @ FOM

- [Image of coating facility]
- **Properties**
 - Extended parameter range & collection of deposition techniques
 - Goal: Technology development for future Zeiss coaters & process exploration
 - Focus:
 - Lifetime: 30,000 hrs
 - Reflectivity: >80% (capped real optic)

Deposition processes: principle layout of different process elements

- Combines thermal, medium energy deposition, plasma & ion surface treatment
- TPM *method: precision deposition of ultra-thin film
 - deposition compounds
 - tunable energy of particles
 - Variable deposition geometry
 - Precision thickness control
 - ex-ray monitoring + quartz combined
- **TPM – thermalized particles magnetron**

Available technologies

- Combination of deposition with particles of different energy
- Barrier layer X at two interfaces
- Ion bombardment: atom mobility, reconstruction, formation of compounds

Example of XPS analysis: B4C layer

- [Graphs of XPS analysis]
- B4C compound in 4:1 stoichiometry can be obtained using both processes

Example: E-beam deposition of B4C interlayers using X-ray monitoring

- [Graphs of X-ray monitoring]
- X-ray monitoring allows to control growth of thin interlayers

Best EUV reflectances

- 70.5% @ 13.3 nm
- 70.15% @ 13.5 nm
- PTB data
- 1.5 degrees off-normal
- Barrier layer X at two interfaces

Thermal stability Mo/X/Si/X

- 100 °C, 24 hrs
 - No change is observed in ML properties around 100°C

Conclusions

- New e-beam and magnetron-based coating technologies allow interface engineering
- Reflectivities above 70% routinely obtained both by e-beam and magnetron sputtering
- Best value 70.5% @ 13.3 nm, 70.15% @ 13.5 nm
- Stress -250 MPa without stress compensation layer: considerably lower than earlier magnetron results on barrier layers (400MPa, M. Shrivast/ SPIE 2004-5374-11)
- First results on thermal stability preserving high reflectivity are very promising (~0.01 nm CTW @ 150 °C)
- BW approaches theoretical 0.55 nm value when using barrier layers

Acknowledgments

Carl Zeiss (Oberkochen)
Foundation for Fundamental Research on Matter (Utrecht)
http://www.zeiss.de/

Example of stress analysis

- Interferometry:
 - 0.2 nm B4C S=150 MPa
 - 0.4 nm B4C S=250 MPa

- Diffraction from Mo crystallites

- Diffraction in qualitative agreement with interferometry measurements

Example of stress analysis

- Current trade-off between reflectivity and stability shows possibility for improvement.