Mask Automation: Lessons Learned from the Wafer Fab Perspective
Presentation Overview

• Problem statement
• Lessons Learned in Equipment Automation
• Lessons Learned in SMIF & MENV
• Automation Vision for the Mask Industry
Problem Statement

• Mask manufacturing is about 10-15 years behind wafer manufacturing in automation terms, resulting in:
 – Poor yield
 – Poor cycle time
 – High costs

• Mask business is much smaller than semiconductor device business
 – Cost to implement change will be a challenge
Wafer Fab Perspective: The Evolution of Process Control

Data visibility is a key enabler
Wafer Fab Perspective: The Evolution of Process Control

• Data visibility
 – Need visibility of what is happening at every process step
 – Post process Metrology only reveals part of the picture

• Process Control
 – Needs to specify equipment data collection requirements
 – Needs to control processing conditions
 – Needs real time data collection for SPC
 – Needs context information to correlate data for yield analysis

• Yield Analysis
 – Identifies specific process steps with poor yield
Mask manufacturing: Current automation scenario

Factory Network

Very few mask tools are connected to the Factory Network

MES SPC

Mask production line

Poor data visibility
Mask manufacturing: Vision of the future

Every mask tool connected to the Factory Network

Factory Network

Mask production line

Good data visibility
Establishing Process Control
First steps: Basic Communications & Control

• Need a host <-> equipment communications standard
 - Hardware interconnect
 - Software protocol

• Need a simple process control framework
 - Equipment data collection setup
 - Basic processing control
 - Equipment based alarm monitoring

E37 HSMS, E5 SECS & E30 GEM are simple to implement
E37, E5 & E30: High Level View

• E37 HSMS & E5 SECS are a hardware interface and a software communications protocol

• E30 embodies functionality required for equipment automation, but only need limited subset for first implementations

Scope of E30:

<table>
<thead>
<tr>
<th>Communications</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Alarms</td>
</tr>
<tr>
<td>Spooling</td>
<td>Limits Monitoring</td>
</tr>
<tr>
<td>Process Programs</td>
<td>Material Movement</td>
</tr>
<tr>
<td>Trace Reports</td>
<td>Terminal Services</td>
</tr>
</tbody>
</table>
Recipes and Process Programs

- E30 has requirements for Recipe Upload (tool to host), Recipe Download and Process Program Select (PP-SELECT)
- Users can live with PP-SELECT for early implementations
 - i.e. select a Process Program that exists on tool
- Host needs to know if operator has changed a recipe
 - PP-CHANGE event
- Recipe structures need to be made public
- Recipe parameters need to be externalized and adjustable

Enables host control
E30 Integration: Leverage available tools and expertise

- Several third party SECS communications drivers available on the market
 - Asyst (GW GEM)
 - Cimetrix
 - Wonderware
 - SDI
 - etc.

- Use of equipment software integrators recommended

- Test implementations against industry standard test plans

- Leverage ISMI Test Service Provider initiative to control quality of test

Goal is common equipment communications behavior
Wafer Fab Perspective: Lessons Learned

• Wafer manufacturing didn’t move from “no communication” to “e-Manufacturing” over night
 – Needed to establish a solid foundation and a roadmap to ensure progress in the right areas for the right reasons
 – Needed to prioritize which areas to address first

• Data visibility is a key enabler

• Systematic data collection into an engineering data warehouse enables effective yield analysis and data mining applications

• Ensure implementation consistency across whole tool set
 – Avoids having to develop custom Equipment Interface per tool
 – Use proven third party SECS communications software
 – Use experienced third party integrators
 – Use ISMI licensed Test Service Providers to validate tool software
Lessons Learned in SMIF & MENV

AMD Fab30 Factory Automation
Newsflash!
Equipment contamination causes defects!

- Particle control more important with reducing line geometries
- Other MENV design characteristics also contribute to contamination
- AMD strongly believes that there is a need for proactive contamination control
- Cannot delegate responsibility to equipment suppliers
 - They don’t understand the problem
 - Need to “set the standard” & check that it has been met
 - Leverage qualified third party expertise
 - Push the cost of compliance onto equipment suppliers (where it belongs)
Holistic Approach Needed

- Everyone associates contamination with particles
- For minienvironments, contamination control needs to be “holistic” – this means that we need to consider the WHOLE manufacturing environment, not just particles
 - Differential Air Pressure ➜ Positive air pressure inside MENV
 - Filter Leakage ➜ No leaks through filter or frame
 - Induction Leakage ➜ Exterior particle challenge
 - Airflow Velocity ➜ Keeping particles away from WIP zone
 - Airborne Particulation ➜ Keeping particles away from WIP zone
 - Surface Particulation ➜ Static and dynamic particle testing
 - Electrostatic Charge ➜ Controlling ESD
 - Temperature & Relative Humidity ➜ Controlling other “variables”
 - Recovery Time ➜ Equipment uptime after PM
 - SMIF Pods ➜ WIP transport environment
Particles are a big problem, but not the only problem...

Dynamic particle problems accounted for 66% of MENV problems on tools tested during equipment acceptance -> 34% from other causes.
Mechanical design of equipment is critical for effective contamination control

- Particle problems on a 150mm tool
 - Problem not detectable when tool was new
 - Wafer handler in close proximity to drive belt
 - Particles generated by drive belt wear
 - Internal cooling fans distributed particles within tool
The same 150mm tool

Problem was so acute that particles were visible to the naked eye
The same supplier’s 200mm tool

- 150mm design problem transferred to 200mm tool

Wafer handler

Cooling fan

Drive belt
AMD Fab 30:
“Single Wire SMIF” requirements were ENFORCED

Equipment Supplier responsible for Tool, SMIF, AutoID

GEM Link covers
• Equipment
• SMIF
• AutoID

AutoID Link

Type 1

Equipment Supplier responsible for Tool & SMIF, only partly for AutoID Integration

GEM Link covers
• Equipment
• SMIF

AutoID Link

Type 2

Equipment Supplier responsible for Tool only

SMIF Link

GEM Link covers
• Equipment

Type 3
AutoID: An **essential** piece of the puzzle

Typical scenario used in wafer manufacturing
- Carrier delivered to process or metrology equipment
- Equipment reads CarrierID and sends to host
- Host verifies CarrierID and identifies job to perform on material and data collection plan
- Host sets up data collection event reports on equipment
- Host selects recipe on equipment
- Host initiates processing
- Equipment processes material and sends collection events to host, including context information
- Equipment completes processing
- Carrier removed from equipment

AutoID helps prevent misprocessing
AMD Fab 30
General SMIF/MENV Experiences

• Fab 30 SMIF/MENV systems had the best yield ramp AMD has ever seen due to excellent MENV functionality, cleanliness and reliability
• Didn’t happen by accident - SMIF/MENV procurement and qualification was planned, monitored and controlled (i.e. “managed”)
• Industry knowledge of SMIF/MENV has increased but there are still problems - equipment suppliers need to be educated
• Equipment suppliers were made responsible for MENV design and load port integration
• Equipment suppliers should contract SMIF/MENV specialists for design and validation
• Non-SMIF tools are a contamination risk
Third Party MENV Integration

- Equipment suppliers have limited MENV design experience
- Recommend third party MENV design specialists to suppliers
- Test early to allow time for corrective action & retest
 - Cheaper to correct design issues before tool shipment!

Avoid the pitfalls of learning from first principles

Leverage wafer manufacturing lessons learned
Third Party Certification

- Use qualified independent contractors for MENV certification
- Source inspection (MENV design qualification)
- On-site acceptance test
- Contractors must have experienced personnel and sufficient test equipment
- Need comprehensive test methodology
- Require a detailed test report (makes redesign and further issue investigation very easy)

Avoid the pitfalls of learning from first principles

Leverage wafer manufacturing lessons learned
SMIF & MENV Lessons Learned

• MENV procurement must be planned, monitored and controlled (i.e. “managed”)

• Industry knowledge of MENV control is increasing but there are still problems – equipment suppliers need to be educated

• Equipment suppliers should be responsible for overall MENV design & reticle load port and AutoID integration

• Equipment suppliers should contract MENV specialists for design and validation

• Third party certification required – MENV design qual and final acceptance
Automation Vision for the Mask Industry: Step-by-Step Approach Required

Automation Software

Step 1
Contract SECS/GEM Specialists

Step 2
SECS/GEM & PP-SELECT

Step 3
3rd Party Test

Step 4
3rd Party MENV Design Qual

Step 5
Add Recipe up/download
Add Recipe parameter control

Goals are Data Visibility and Control

SMIF & MENV

Step 1
Contract MENV specialists

Goal is Contamination Free Manufacturing

Add sensor alarms
(Could include in earlier step)

In-fab MENV Test

Add Recipe up/download

3rd Party Test

(must be of high quality)

Contract SECS/GEM Specialists

Software

Step 2
SECS/GEM & PP-SELECT

SMIF & MENV

Step 1
Contract MENV specialists

Goal is Contamination Free Manufacturing

Add sensor alarms
(Could include in earlier step)

In-fab MENV Test

Add Recipe up/download

3rd Party Test

(must be of high quality)

Contract SECS/GEM Specialists

Software

Step 2
SECS/GEM & PP-SELECT

SMIF & MENV

Step 1
Contract MENV specialists

Goal is Contamination Free Manufacturing

Add sensor alarms
(Could include in earlier step)

In-fab MENV Test

Add Recipe up/download

3rd Party Test

(must be of high quality)
Trademark Attribution

AMD, the AMD Arrow Logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.