Electrical and Reliability Characteristics of HfSiON Gate Dielectric

J. McPherson, A. Shanware and L. Colombo

Silicon Technology Development
Texas Instruments, Dallas Tx 75265

2002 Topical Research Conference (TRC) on Reliability
U.T. Austin, J.J. Pickle Research Center
October 28-30, 2002 --- Austin, Tx
Outline of Presentation

• High-k R&D
 ➢ Motivation
 ➢ General High-k requirements
 ➢ Why HfSiON?

• HfSiON Material Characteristics
 ➢ Amorphous structure
 ➢ Effective boron diffusion-barrier

• Device Characteristics
 ➢ MOSCAPs
 ➢ MOSFETs

• Reliability Characteristics
 ➢ Thermal stability
 ➢ Hysteresis
 ➢ BTS Stress
 ➢ TDDDB

• Additional R&D Opportunities
Nitrided SiO₂ dielectrics will have difficulties meeting gate leakage requirements for devices beyond the 70 nm node.
Key Gate-Dielectric Requirements

• Structure: Amorphous or Single Crystal Preferred

• Low-Leakage: High E_g, ΔE_{CB}, ΔE_{VB}

• High-k: Scalable EOT $[\text{EOT} = (3.9/k) t_{\text{high-k}}]\$

• Low D_{it}: Similar to SiO$_2$ or nitrided SiO$_2$

• Barrier to impurity/dopant diffusion

• Thermal Stability: Stable in contact with
 ➢ Si
 ➢ poly-Si, poly SiGe?
 ➢ metal gates (longer term)
Medium-k Approach

- Take advantage of SiO₂ and SiON properties and structure
- Increase dielectric constant by introducing a metal M in the SiON matrix such as Zr, Hf etc.
- Permits interface engineering using SiO₂ or SiON
- Minimizes dopant diffusion

\[
\begin{align*}
\text{SiO}_2 & \rightarrow \text{SiON (PNO)} \\
\text{SiON} + M & \rightarrow \text{MSiON}
\end{align*}
\]
Chemistry and Physics

SiO$_2$

Silicates

Coordination
- **Si**: 4 fold
- **Hf**: 4 and 8 fold

Electronegativity
- **Si**: 1.9
- **Hf**: 1.3

M-O Bond length (Å)
- **Si**: 1.7
- **Hf**: 2.2

M-O Bond Strength (eV)
- **Si**: 5.4
- **Hf**: 8.0

* Pauling method of estimation
Hf-based Medium-k Materials

- HfO$_2$: High- $k(\sim25)$, crystalline, B- permeable
- (Hf,Si)O$_2$: Medium- $k(7-12)$, crystalline, phase separation
- HfON: High- k, nano-crystalline, B-blocking?
- HfSiON: Medium- k, amorphous, B-blocking, thermally stable
Why is Amorphous Desirable?

- Linear, isotropic and homogeneous
 - Minimal surface re-construction / roughness
 - Minimal phase change / separation

- No extended defects
 - Grain boundaries
 - Dislocations
 - Lower diffusion of dopants or metals (in the case of metal gates)

- If point defects in SiO$_2$ and SiON are deleterious---then extended defects in high-k could be disastrous
Thermal Stability of HfSiON

HfSiON is structurally stable after annealing at 1100°C for 60 s.

(Hf,Si)O$_2$ nano-crystalline

1100°C N_2 Anneal

HfSiON amorphous

1100°C N_2 Anneal

Glancing Angle XRD

As-deposited
1100 °C, N$_2$, 60 sec

HfSiO$_2$

~100 Å Thick

Normalized Intensity (arb)

10 20 30 40 50 60 70

Two Theta (deg)

Normalized Intensity (arb)

10 20 30 40 50 60 70

Two Theta (deg)
Diffusion Barrier Characteristics
V$_{fb}$ Shifts due to Boron Penetration

<table>
<thead>
<tr>
<th>Gate Dielectric</th>
<th>EOT (Å)</th>
<th>ΔV$_{fb}$ (mV) 950°C - 15 s</th>
<th>ΔV$_{fb}$ (mV) 1050°C - 15 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>16.6</td>
<td>30-40</td>
<td>Broken Down</td>
</tr>
<tr>
<td>SiON</td>
<td>~13</td>
<td>30-40</td>
<td>Broken Down</td>
</tr>
<tr>
<td>HfSiON</td>
<td>14.6</td>
<td><4</td>
<td>~130</td>
</tr>
</tbody>
</table>

Conclusion: For similar EOT, HfSiON is a more effective boron diffusion-barrier than either SiO$_2$ or SiON.
Device Characteristics
C-V, J-V and Scaling of HfSiON

- **Capacitance (pF)**
 - Voltage (V) range: -1.5 to 1.0
 - Values: 0, 20, 40, 60, 80, 100

- **Jg (A/cm²)**
 - Voltage (V) range: -2 to 2
 - Values: 10⁻⁶, 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹, 10⁰, 10¹, 10²

- **EOT = 13.1 ± 0.2 Å**
- **Jg ~ 0.3 A/cm²** for PMOS
- **Jg ~ 0.5 A/cm²** for NMOS

- **Poly-Si Electrode**
- **5x10⁻⁵ cm²**
- **18 sites**

- **NMOS**
- **EOT = 13.1 ± 0.2 Å**
- **Jg ~ 0.5 A/cm²**

- **PMOS**
- **EOT = 13.1 ± 0.2 Å**
- **Jg ~ 0.3 A/cm²**

- **5x10⁻⁵ cm²**
- **98 sites each**
MOSFET characteristics seem to be well behaved
Subthreshold slope of ~ 90mV/dec
Electron and Hole Channel Mobility

(HfSiON as Gate Dielectric)

- Carrier Mobility is ~ 80% of Universal Curve at high field for both n and p-channels
Thermal Stability of Devices during Standard CMOS Processing
HfSiON is electrically stable even after annealing at high temperature, >1000°C, in N₂ gas for both pMOS and nMOS devices.
• High temperature annealing in N\textsubscript{2} for 15 sec has minimal impact on flat band and EOT of NMOS & PMOS HfSiON capacitors.
V_{fb} shift (PMOS)

950 °C 15 sec anneal IN ADDITION TO standard dopant activation

- < 4 mV shift for HfSiON
- ~ 35 mV shift for SiO$_2$
- > 100 mV shift reported for HfO$_2$ (Onishi et al., VLSI Symp. 2001) with a 10 sec 950°C anneal
Device Stability under Electrical Stress
HfSiON shows minimal C-V hysteresis for both pMOS and nMOS capacitors.
MOSCAP Stability Under BTS

Burnin-Like Stress Conditions: 1.4V, 140°C, 1hr

- C-V is stable (negligible Vfb shift)
- J-V is stable (negligible charge trapping)
TDDB Characteristics
HfSiON films show soft breakdown characteristics.
Time-to-failure was defined as first soft-breakdown event.
TDDB for HfSiON Follows Weibull Distribution

- Observed Weibull slope $\beta \sim 1.4$
- β for HfSiON is similar to RPNO and better than thermal SiO$_2$ (for same EOT)
TDDB Field (Voltage) Dependence

- HfSiON breakdown strength (~7 MV/cm) is lower versus SiO₂ (~15 MV/cm)
- Field (voltage) acceleration seems acceptable for burnin
Opportunities for Reliability Research

- Source of mobility degradation (~20% for both n and p-channel)
- Vtp offset with High-k gate-dielectric and poly-gate electrodes
- Metal gate-electrode research
- Extensive TDDB data and physical model needed
- Extensive NBTI and PBTI data needed for HfSiON
- Impact of BEOL (e.g., plasma damage) on HfSiON
- Low defect-density HfSiON deposition method which is suitable for high volume manufacturing
Summary and Conclusions

• HfSiON remains amorphous up to ~ 1100°C

• HfSiON tends to block boron diffusion

• Channel mobility for electron and holes is ~ 80% of the universal curve --- higher than that reported for HfO₂ and Al₂O₃ at 1 MV/cm

• The stability and scalability of HfSiON make it an attractive medium-k gate dielectric candidate

• Many opportunities for future Reliability R & D