Technical Challenges in TSV Integration to Si

Sungdong Cho
System LSI
Samsung Electronics Co. Ltd.

SEMATECH Symposium Korea 2011
October 27, 2011
Contents

- Introduction
- Challenges in TSV Process Integration to Si
 - TSV Process Flow & Key Technologies
 - Issues in TSV Integration to Si
 - TSV Impact on BEOL
 - TSV Impact on FEOL
 - TSV Yield
- Conclusions
Electronics Industry Trends

High Density / High Speed / Low Power
Scaling continues, but is getting more and more difficult & expensive !!!
3-D TSV Technology

- 3-D TSV is an alternative solution!!!

- Small form-factor
- Higher performance
- Lower power consumption
- Multi-function integration
- Cost effective (?)
TSV Applications: Stacked Memories

- In 2006, the development of wafer-level processed stack package (WSP) of high-density memory chips using TSV interconnection technology.

- Aug 2011, 32GB DDR3 RDIMM using 3D TSV technology.
TSV Applications: CIS & Logic

TSV for CMOS Image Sensors
- Via Last
- Mass Production (2008~)

TSV for Logic Applications
- Via Middle
- Memory on Logic & Si-Interposer
Why TSVs?

- Mobile AP Bandwidth Requirement

Bandwidth requirement is doubled by every year

→ Wide I/O is the solution!!! → TSVs are needed
Great Combination: Wide I/O + TSV

- Best of both worlds
 - Wide I/O: For performance
 - TSV (Through Silicon Via) for Thinnest multiple-die stack

![Wide I/O + TSV Diagram]

![Size, Power & Speed Diagram]
Wide I/O DRAM

- Mobile Wide I/O DRAM capable of 12.8GB/s data transfer

FEB, 2011

12.8GB/s through x512 I/Os

<table>
<thead>
<tr>
<th></th>
<th>Conventional 3D Package (FC-PoP) with LPDDR2</th>
<th>TSV-SiP with Wide I/O memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory I/O Power Consumption</td>
<td>176 mW</td>
<td>44 mW</td>
</tr>
</tbody>
</table>
Introduction

Challenges in TSV Process

- TSV Process Flow & Key Technologies
- Issues in TSV Integration to Si
 - TSV Impact on BEOL
 - TSV Impact on FEOL
 - TSV Yield

Conclusions
3-D TSV Process Options

<table>
<thead>
<tr>
<th>Process</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV drilling</td>
<td>Bosch DRIE</td>
</tr>
<tr>
<td>Non-Bosch DRIE</td>
<td>Laser</td>
</tr>
<tr>
<td>TSV side wall insulation</td>
<td>SiO2</td>
</tr>
<tr>
<td>Polymer</td>
<td></td>
</tr>
<tr>
<td>TSV-filling conductor</td>
<td>poly-Si</td>
</tr>
<tr>
<td>Cu</td>
<td>W</td>
</tr>
<tr>
<td>TSV process flow</td>
<td>Vias First</td>
</tr>
<tr>
<td>Vias Middle</td>
<td>Vias Last backside</td>
</tr>
<tr>
<td>Vias Last frontside</td>
<td></td>
</tr>
<tr>
<td>Stacking</td>
<td>Wafer to wafer</td>
</tr>
<tr>
<td>Chip to wafer</td>
<td>Chip to substrate</td>
</tr>
<tr>
<td>Bonding</td>
<td>Direct oxide</td>
</tr>
<tr>
<td>Polymer</td>
<td>Cu-Cu thermo-compression</td>
</tr>
<tr>
<td>IMC</td>
<td>Hybrid Direct bond</td>
</tr>
<tr>
<td>Thin wafer handling</td>
<td>On carrier</td>
</tr>
<tr>
<td>on stack</td>
<td></td>
</tr>
</tbody>
</table>

Philip Garrou, 3-D ASIP, 2010
Process Flow: Via Middle & CoW

FAB Wafer Process
1. FEOL
2. TSV Formation
3. BEOL
4. C4 Bump Formation
5. Glass Carrier Attach

Post FAB Wafer Process
5. Back grinding
6. Passivation
7. TSV Exposure
8. μ-pad

Assembly & Packaging
- Tafill
- CoW (chip-on-wafer)
- Glass Detach & Sawing
- Flip Chip Assembly

Diagram credit: Samsung
Key Technologies in 3D-TSV

1. Via Process
- High Aspect Ratio Via Filling
- Via Module Integration
 - TSV to FEOL Interaction
 - TSV to BEOL Interaction
- Backside via exposure & passivation
- Yield & Reliability
- Manufacturability

2. Carrier technology
- Attachable/ Detachable
- Small total thickness variation
- Post-fab process compatibility

3. u-Bump joining
- Bump Metallurgy
- Bonding Scheme
- Multi-stacking (Multi-memory)
- Yield, Reliability

4. Flip-chip assembly
- Large die flip chip assembly
- Low-k reliability

5. Thermal

6. Test

7. Design Infra
Via Dimension
: 6um x 55um (50um after thinning)

Via Structure for Logic Applications

- Field Oxide
- TSV (Cu)
- ILD Oxide
- Low-k Dielectric
- M1 TSV Cap
- TSV (Cu)
- O3 TEOS
- Si

Ar milled depth
444um
781um

Wafer thickness
Process Flow: Via Front Side Module

1. Litho
 - PR
 - Si substrate

2. Deep RIE
 - Si substrate

3. Isolation Oxide Deposition
 - Si substrate

4. Barrier/Seed
 - Si substrate

5. Cu Electroplating
 - Si substrate

6. CMP
 - Si substrate
TSV DRIE

- Bosch Process: very high selectivity
- Process Challenges:
 - Undercut, Scallop, Via depth uniformity, PR Selectivity, Throughput

Bosch Process

- Isotropic etch step
- Polymer deposition step
- Isotropic etch step

- Net anisotropic profile
 - ‘Scallops’
- High net etch rate
- High mask selectivity

Trade off btw ER and Scallop

- Longer Step Time
 - Large scallop
 - High etch rate

- Shorter Step Time
 - Smoother sidewall
 - Slower etch rate

Source: AMAT
TSV DRIE

Reference

Improved Process; E/R > 10um/min

Top

Middle

Bottom
Most expensive and longest process time

Requirements of Cu Fill

1) Void-free Cu filling
 - Bottom-up fill is not easy
2) Low Cu overburden
3) Low CoO (high throughput)

* Electrolyte chemistry and seed layers are key contributors to the quality of the via filling.
 ➔ Appropriate additive selection will achieve the “bottom-up” fill.

Source: Semitool
Backside Via Exposure

• Total thickness variation (TTV)
 - TTV = Glass + Glue + B/L + Via depth + Si recess etch

• Passivation & planarization
 - Defect-free
 - Cu contamination-free
Introduction

Challenges in TSV Process

- TSV Process Flow & Key Technologies
- Challenges in TSV Integration to Si
 - TSV Impact on BEOL
 - TSV Impact on FEOL
 - TSV Yield

Conclusions
Challenges in TSV Integration to Si

- Many concerns in TSV integration into Si
- No Impact due to TSV is a baseline for 3D-IC

- High Aspect Ratio Via Filling
- 3D-TSV Impacts on Devices & BEOL
 - TSV
 - Thin wafer
 - Backside via exposure
 - GWSS process
 - u-bump & stacking process
 - PKG stress
Cu Extrusion

- **Cu extrusion and delamination**
 - CTE difference btw Cu (~17ppm/K) and Si (~3ppm/K)
 - Process temperature of BEOL IMD deposition

![Diagram showing Cu extrusion and delamination](image)

Step by step Inspection

- BM/Seed Cu
- EP-Cu
- Cu Anneal
- Cu CMP
- IMD
- TSV module
- BEOL
Power of Cu Extrusion

▪ Examples

• Solid TSV

• Annular TSV

from Tezzaron
Solution for Cu Extrusion

➢ Process Optimization

(a)
(b)

TSMC, IEDM 2010
Effects of Via Dimension

- Smaller TSV \rightarrow Less stress & more reliable
- TSV dimension will get smaller because BEOL is getting weaker as scaling

Aspect ratio limit (10:1)
X : delamination

TC 1000 pass

Smaller TSV \rightarrow Less stress & more reliable
TSV dimension will get smaller because BEOL is getting weaker as scaling
TSV Process Impact on Devices

- Vth shift induced by TSV process

- Device performance can be affected by TSV process
- Devices are getting more sensitive; HKMG, Fin FET, Carbon nanotube FET
TSV to Device Interactions

- Device performance change by TSV stress.

Tensile Stress in Silicon

- Stress Measurement using µ-Raman Spectroscopy

R. Geer, IRPS 2011

TSMC, VLSI Symp., 2011
Simulation vs. Experiments

(IMEC, 3D-ASIP 2010)

(TSMC, IITC 2011)
TSV to Device Interactions

TSV proximity impacts on 45nm CMOS devices

Samsung, IITC 2011

<table>
<thead>
<tr>
<th>TSV position</th>
<th>Gate Oxide</th>
<th>Channel</th>
<th>Impact/Impacted distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vth</td>
</tr>
<tr>
<td>Horizon</td>
<td>Thin</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>+/2um</td>
</tr>
<tr>
<td>Diagonal</td>
<td>Thin</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>+/1um</td>
</tr>
<tr>
<td>Vertical</td>
<td>Thin</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>Short</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long</td>
<td>+/2um</td>
</tr>
</tbody>
</table>

(1) Impact of TSV was observed in less than 2um distance only. The amount of changes caused by TSV were very small, less than 2% in maximum.
(2) Long channel looks more sensitive than short channel.
(3) No impact was found in thin_short_NFET.
(4) No significant impact on off-current.
(5) NMOS looks more sensitive than PMOS.
(6) Regardless of the TSV positions, Idsat is decreased for NFET and increased for PFET by TSV.
Cu Contamination

- **Cu contamination**
 - Device performance degradation by Cu diffusion
 - **Sources**
 - Cu leak through via side wall due to poor liner/BM coverage
 - Cu contamination during backside process
 - Backside passivation
 - Thinned wafer → decrease of gettering layer
Yield of TSV chains with 1000 TSVs
- By eliminating void, > 99% chain yield was achieved
- ~100% yield is required for no test

<table>
<thead>
<tr>
<th>Wf No.</th>
<th>No. Fail</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>5/1168</td>
<td>99.57</td>
</tr>
</tbody>
</table>
Conclusions

- No impact due to TSV is a baseline for 3D-IC
- There are many obstacles, but 3D-IC is coming soon

Phil Garrou, “The 4 Horsemen of 3D IC, Perspectives from the Leading Edge,”
Oct. 16, 2009