Thin Die Technology – Agenda

- Introduction
- Beneficial Machine Architecture
- Pick Process & Process Control
- Application Tools and Optimization Process
- SW Features for High End Apps
- Yield Assurance
- Conclusion / Roadmap
Key Driver for Thin Die Handling Technology:

Die Thickness Trend

Production (high end MCP)
Qualification / Demo

DAF / FOW Thickness Trend

Film over Wire
Mother Die DAF
Daughter Die DAF
Successfully Processed Thin Die App’s on iStack

3 Layer Stack (MD – DD – Controller) Thickness 15µm Die / 5µm DAF

10 Layer Shingle Stack Thickness 15µm Die / 5µm DAF
K&S Thin Die Technology Overview

- Thin Die (Needle-less) Ejector & Pick Mode
- Dedicated Vacuum Supply

- Special ‘Seal Lip’ Tool
- Multi-Step
- Smooth Tool Lift-off
- Expert Diagnostics
- Step-wise Pick

Standard & Multi Needle (Magnetic) Die Ejector

Thin & Small Die (Needle-less) Ejector & Pick Mode
K&S Thin Die Pick Technology
- Machine Architecture
Equipment Architecture

Key Benefits for Thin Die Handling:

- **Process Performance & Flexibility**
 Optimized pick & place tooling design

- **Highest Throughput**
 Long pick times for high-end DAF/FOW app’s are “hidden” behind bond process through parallel die handling

- **Process Stability**
 “Cold” pick process while bonding at high temperatures
Separated PTP architecture allows for optimized pick & place processes!

- **Pick Tool** – Many big holes = Strong pick
 - Multi-hole tools optimized for pick yield

- **Transfer Tool** – High Accuracy
 - Transfer tool designed for highly accurate handover process
 - Vacuum holes location optimized to prevent “potato chip effect” on thin die for reliable vision
 - Tool has “self cleaning” effect and lowest surface energy – optimized for WBL/FOW handling

- **Place Tool** – No Voids
 - Tool optimized to eliminates voiding
K&S Thin Die Technology – Pick Process & Process Control
Thin Die Picking Method Piston Ejector

1. **Tool Impact**
 - Vacuum Level
 - Impact Speed
 - Pick Force

2. **Initial Peeling**
 - Separation Distance
 - Separation Speed
 - Multi-Step Separation configurable

3. **Retraction – Final Peeling**
 - Pick Force
 - Retract Distance
 - Retract Speed
 - Multi-Step Retraction configurable

4. **Die Pick-up**
 - Smooth Tool Lift-off configurable
Thin Die Picking Method Slider Ejector

1. **Tool Impact**
 - Vacuum Level
 - Impact Speed
 - Pick Force

2. **Initial Peeling**
 - Eject Height
 - Eject Speed
 - Slider Speed
 - Slide Distance
 - Multi Step configurable

3. **Final Peeling**
 - Sliding Distance
 - Slide Speed
 - Multi Step configurable

4. **Die Pick-up**
 - Smooth Tool Lift-off configurable
(Thin) Die Handling Process Control

iStack’s Tool Impact, Force & Position Control for Minimum Stress on the Die:

Tool Impact Control:
- Tool impacts at user adjustable constant velocity
- Tool impacts are automatically detected and adjusted during *each* machine cycle

Force Control:
- Force is generated by linear motors (spring-less) with auto calibrated current loops
- Highest force repeatability through closed loop current control

Position Control:
- Dies are positioned and handed over between tools within 1.5µm (sigma), implying zero shear stress during pick and handover
- Drifts are eliminated through “Dynamic Calibration” during production
K&S Thin Die Technology – Application Tools and Optimization
Thin Die Ejector Optimization

Die Ejector Design Optimization using Finite Element Analysis based on:

- minimizing tensile (center and neighbor) die stress near/along the die edges
- maximizing peel stress along the die edges
Excellent agreement between FEA model and Pick Test (7.8x10.8mm Die, 25µm thin)

FEA Model: Red WBL sticks on Tape, Blue WBL peeled from Tape

Thru-Tape Photos: Dark Grey WBL sticks on Tape, Light Grey WBL peeled from Tape
Thin Die FEA Model Validation

Process Tests on Various Devices for Verification of FEA Results & Developments

- **Test Device Information:**
 - Die Thickness: 15µm
 - DAF Tape: Hitachi FH9011
 - Die Sizes:
 - 17.15mm x 9.70mm
 - 16.90mm x 10.65mm
 - 10.80mm x 7.80mm
 - Pick Cycle time: 350ms

![Graph showing thin die picking performance on 15µm die](image)

<table>
<thead>
<tr>
<th>Ejector Type</th>
<th>Die Picked</th>
<th>Crack Yield</th>
<th>Pick Yield</th>
<th>Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston 2011</td>
<td>224</td>
<td>100.00%</td>
<td>99.55%</td>
<td>99.55%</td>
</tr>
<tr>
<td>Piston 2012</td>
<td>231</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Slider</td>
<td>1684</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Seal Lip Pick Tool maintains vacuum between tool and thin die if the die deforms:

- Strengthens grip and adds stiffness to the die
 - Increases pick-up yield
- Avoids stress due to pressure difference between atmospheric pressure and ejector vacuum
 - Reduces die bending

Flexible seal to cover the edges of die

FEA of tool with vacuum, showing lip seal compliance

Prototype

Standard Pick Tool

Seal Lip Pick Tool

Confidential
Thin Die Technology – SW Features for High-End App’s
Multi-Step Separation Process:

- More flexibility to parametrize the separation process
- Better control of initial peel process for applications with high “edge tackiness”

Configuration of Multi-Step Separation

(Fast) Initial peel process for low “edge tackiness”:

- $\Delta t = 2\text{ms}$

(Slow) Initial peel process for high “edge tackiness”:

- $\Delta t = 40\text{ms}$
- $\Delta t = 60\text{ms}$
- $\Delta t = 70\text{ms}$
Smooth Pick Tool Lift-off @ End of Pick Process:

- More flexibility to parametrize the pick tool lift-off motion
- Higher process reliability for extremely thin or high “edge tackiness” dies
K&S Mixed Signal Scope for Process Setup:

- K&S includes unique monitoring and diagnostics SW scope, tracking all
 - axes position, speed & acceleration set points & actual readings,
 - digital and analogue I/O’s
- Allows for detailed pick process analysis & optimization

Example:

Pick tool detects leaks between pick tool and die → Conclusions on effectiveness of peel process

- Initial peeling not started – leakage between tool and die during separation
- Initial peeling completed – no leakage between pick tool and die
Thin Die Technology – Yield Assurance
Yield Assurance

Crack Inspection System

Transfer Camera:
- Full Die image @ 30µm/pix
- Technically NOT possible to make Cracks visible with full field FOV sensor (MP limit)

Hi-Resolution Microscope:
- ≈ 0.6µm/pixel → very small FOV
- Hard to tell Edge from Cracks
- Needs multi-image scanning (time consuming = low UPH)

K&S technique:
- Full Die image at 60µm/pixel resolution
- Special illumination technique
- High resolution **NOT** required even for 1µm crack

Cracks appear as bright signals on dark background

“Crack Detection Module” Inspection after Die Pick-Up

SEM image

Red Lines indicate Cracks

1.7 / 4.4µm crack width

17.1mm

10.0mm

210µm

320µm

≈ 10mm
Thin Die Technology – Conclusion / Roadmap
Conclusion

- Production proven ‘Best in Class’ Thin Die Handling
- Demonstrated Unique Crack Detection Capability

Roadmap - Extension of Current Thin Die Technology to Advanced Packages

- Background
 - TSVs will create different stress distribution in thin die.
 - Thinner Die ⇒ easier Via manufacturability ⇒ smaller possible Via ∅ (aspect ratio Via depth/∅)
 - Pillars are not touchable. Changed Pickup Tool geometry ⇒ different stress distribution.

- We will enhance existing technology for thinnest possible TSV / Copper Pillar Die.
 - Verification on suitability of existing thin die technology is started
 - Reduce inner stress on TSV and Copper Pillar Dice with FEA models and validation.
 - Looking for partners to validate Technology on TSV and Copper Pillar Dice in production environment.
Question / Answers
This PowerPoint presentation and all of its contents are protected under International and United States Copyright laws. Any reproduction or use of all or any part of this presentation without the express written consent of K&S is prohibited.