Through Silicon Via Testing
Known Good Die (KGD) or Probably Good Die (PGD)

Doug Lefever
Advantest
Single Die Fab Yield will drive Cost Equation….

So of course we need to test the die before stacking….
Must also consider both Backside Process & Test related Yield...

If Assume Backside Process Yield Loss = 1% (flip chip 1% after 20 years)
If Assume Test Escapes = 1% (let’s discuss today)....

Then...
5 die stack could have 10% final yield loss

The final yield
Yield of single-chip

Number of chips to be stacked
SoC Memory
Conventional Test Flow

- **Wafer Process**
- **Wafer Test**
- **Back Grinder**
- **Dicing**
- **Packaging**
- **Final Test**

TSV Wafer Test Challenges

- High Pin Count
- Fine Pitch
- Low Contact Pressure
- Drive-ability
- ESD
- Die Level Completeness
- TSV Check

Added Test Yield Concerns
High Pin Count + Fine Pitch + Low Contact Pressure + Drive-ability + ESD + Die Level Completeness + TSV Check

Limitation: - Current Advanced Probe Cards have Pin Count & Pitch Limits due to MEMS & MLC/Organics

Countermeasures: - Use Dedicated Test Pads, Speed Scan DFT, Correlation based test
- Use Non-contact probing

Issues: - Test Pads take real estate & design time.
- Cannot test I/O characteristics, test pad leakage concerns.
- Non-contact probing requires transmitters and receivers, and power delivery must still be made by physical contact.

Adds Test Yield Concerns
Limitation:
- Advanced Probe Cards have contact forces ~2g per contact
- TSV Die may require <1g

Countermeasures:
- Probe before backside processes (BG, CMP, Etch) or
- Use Non-contact probing

Issues:
- Backside processes may induce defects that may go untested.

Adds Test Yield Concerns
Limitation: - Lack of Buffers in device creates drivability problem through fixture to ATE.

Countermeasures: - Active probe cards with buffer amp circuitry.

Issues: - Probe cards require high density circuitry, unproven architecture.

Adds Test Yield Concerns
Limitation:
- TSVs create paths to internal nodes of IC not previously exposed.
- Circuit loading may be issue with ESD structures.

Countermeasures:
- Limit ESD in machine model
- Weak, small size ESD flip-flop circuits on IC
- Other: Current trigger and Source Pumping,

Issues:
- Test access point with many switches to TSVs takes lots of space, adds capacitance and requires power.

Adds Test Yield Concerns
Drive-ability
High Pin Count + Fine Pitch + Low Contact Pressure + Drive-ability + ESD + Die Level Completeness + TSV Check

3D clock tree for optimized length and power

Limitation: - If logic is partitioned on different layers, single die may not be fully testable.

Countermeasures: - DFT, Scan Chains
- Comment: IDMs may go this route, but fabless design model may not support repartitioning due to design and software complexities.

Issues: - Not much choice.

Source: Test Strategies for 3D Die-Stacked Integrated Circuits
Lewis & Lee, Georgia Institute of Technology
Highlight:
- High Pin Count
- Fine Pitch
- Low Contact Pressure
- Drive-ability
- ESD
- Die Level Completeness
- TSV Check

Limitation:
- If wafer test before backside processing, TSV cannot be contacted.
- If backside processing before wafer test, no probing or material handling solutions exist for top & bottom side contact.

Countermeasures:
- Use carrier like Film Frame to handle thinned, processed wafers
- Use non-contact (x-ray, infrared, thermography, EM, etc) to inspect TSV structures.

Issues:
- TSVs need to be reliably tested. PPM can have big effect.

Example:
If 1 Die = 1000 TSV
If TSV PPM = 10
Die Yield = 99%

Source: Optimized TSV Filling Process Reduces Cost, Nexx Systems

Add Test Yield Concerns
There are possible solutions to allow continued use of conventional wafer test architecture. They mostly require:

• Silicon Solutions (Test Access Ports & DFT)
• New Probe Card Solutions

These may come at a Test Yield penalty. “Probably Good Die” could become “Maybe Good Die” and unacceptable yield loss at stack.
Conclusion

A Non-Conventional Test Methodology that enables KGD is needed.

- Wafer vs. Singulated Die test
- Zero Force Contacting
- Carrier technologies
- Combined Non-Electrical test
- TSV Top Bottom & Side contacting

→ KGD will be essential to making TSV Stacking cost effective.
Thank You
Domo Arigato