Realizing Energy-Efficient Integrated Circuits with NEM Relays

Elad Alon (UC Berkeley)
in collaboration with
Tsu-Jae King Liu (UC Berkeley),
Vladimir Stojanovic (MIT),
Dejan Marković (UCLA),
Chanro Park, Rinus Lee, Wei-Yip Loh (SEMATECH)
Digital Computing Power Crisis

Power Density Prediction circa 2000

- Since ~2000 supply voltages (V_{DD}) stuck at ~1V
 - Leakage stops you from lowering threshold (V_T)

- Leads to very poor power scaling… 1kW chips?
Parallelism to the Rescue

- Parallelism allows slower, more efficient cores
 - While maintaining overall throughput

- Works well (if you can parallel program), but…
Leakage: Game Over for CMOS

- CMOS circuits have an absolute minimum energy
 - Need to balance leakage and dynamic components

- Parallelism doesn’t help if already at E_{min}
NEM Relays: The Next Savior?

- Mechanical relays don’t leak, turn on abruptly
 - Potential pathway to continued energy scaling
 - Relay E_{min}: $\sim1\text{aJ}$ (>10X better than 65nm CMOS)
- Device/circuit co-design critical

R. Nathanael et al., “4-Terminal Relay Technology for Complementary Logic,” *IEDM 2009*
Relay Structure and Operation

ON:
\[|V_{gb}| > V_{pi} \text{ (pull-in)} \]

OFF:
\[|V_{gb}| < V_{po} \text{ (pull-out)} \]

Poly-SiGe

Tungsten
NEM Relay as a Logic Element

- Mimics operation of CMOS transistors
 - Electrostatic actuation is ambipolar
- Unlike CMOS, non-inverting logic is possible
 - Switch state set only by gate-to-body voltage
Digital Circuit Design with NEM Relays

- **CMOS**: delay set by electrical time constant
 - Cascade simple gates to distribute fanout

- **Relays**: delay dominated by mechanical movement
 - So, want all to switch simultaneously
 - Implement logic as a single complex gate (1930’s)
Need to Compare at Block Level

- Single mechanical delay per block
 - Substantially mitigates perceived delay disadvantage

- Often fewer devices for same function
 - Comparable area despite larger individual devices
Example: 32-bit Relay Adder

- **Ripple carry configuration**
 - Cascade full adder cells to create larger complex gate

- **Stack of 32 relays, still a single mechanical delay**
Scaled Relay vs. CMOS Adders

- Compare vs. CMOS adder* in 90nm technology
- For similar area:
 - >9x lower E/op
 - >10x greater delay

Parallelism

- Can extend energy benefit up to GOPS throughput
 - As long as parallelism is available
Contact Resistance

- Low contact R not critical

- Good news for reliability…
Higher contact R, hard contact (W) improves reliability
- Limits power dissipation, material flow

Current endurance record: 65 billion cycles
- Theory/experiments predict >10^{15} cycles @ 1V VDD
Circuit Demonstration Platform

Test Devices
9mm

8-bit adders
4-bit and 2-bit adders
2-bit accumulator
SRAM
Flip-flops
DRAMs
7:3 Compressor
4-bit DAC
4-bit ADCs
Oscillators

F. Chen et al., ISSCC 2010, M. Spencer et al., JSSC, Jan. 2011
Relay VLSI Design Infrastructure

- Verilog-A model & Logic Synthesis customized for relays
- Flow supports multiple device designs and foundries
Looking Forward: Need Advanced Materials

- Advanced materials crucial to solving remaining technology challenges
 - E.g., W contacts unstable due to oxidation
 - Sematech enabling exploration of Ru/RuO₂ contacts
Scaling Back to The Future?

1 µm litho (UCB)

120µm x 150µm

0.25 µm litho (Sematech)

20µm x 20µm
Conclusions

- Relay characteristics enable energy scaling beyond CMOS
 - Nearly ideal I_{on}/I_{off}
 - Need to adapt circuit design style

- Reliability improving
 - Circuit level insights critical (contact R)
 - Demonstrated simple, operational circuits

- Potential for 10X or more lower E/op than CMOS
 - Scaling, advanced materials critical
 - Next step: >10k relay µC demo with scaled devices
Acknowledgements

- **Circuit design**
 - Matthew Spencer, Patrick Kwong, Abhinav Gupta
 - Fred Chen, Hossein Fariborzi
 - Chengcheng Wang, Kevin Dwan

- **Device design**
 - Philip Chen, Louis Hutin, Jaeseok Jeon, Hei Kam, Rhesa Nathanael, Vincent Pott

- **Sponsors**
 - DARPA NEMS program
 - FCRP (C2S2, MSD)
 - Berkeley Wireless Research Center
 - MIT CICS
 - NSF